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Abstract

Frontrunning is an active exploit where an attacker benefits from advanced
access to privileged market information about upcoming transactions. Dating
back to traditional financial markets, the decentralized and open nature of the
blockchain has found a new variant of frontrunning attacks with severe im-
pact. Several solutions have been proposed to mitigate frontrunning including
automatic market makers and confidential transactions.

A timelock encryption scheme allows a user to commit a secret to a partic-
ular time in the future, after which the secret will be made public. We propose
a new timelock encryption scheme as a mechanism to thwart frontrunning at-
tacks in the blockchain space. The scheme utilizes a distributed randomness
beacon (drand), elliptic curve cryptography, bilinear pairings and threshold
BLS signatures as building blocks. It is inspired by Boneh Franklin’s Identity
Based Encryption scheme and is adaptive chosen ciphertext attack secure(IND-
ID-CCA) under the Computational co-Bilinear Diffie Hellman problem. As a
proof of concept, we provide a web platform built in JavaScript for timelock-
ing arbitrary messages with near-native speed. For feasibility study, a concrete
integration of our construction in the Filecoin infrastructure has been under-
taken. Additionally, we conduct an analysis of the performance and security
of our prototype. On average, it took 62ms for encryption and 33ms for de-
cryption for 3KB transactions on our testbench. Finally, we conclude with the
possible drawbacks and other useful applications of our scheme.
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Chapter 1

Introduction

Blockchain technologies saw their inception in the beginning of last decade
through Bitcoin. Since then, an entire $3 trillion industry has been built
around it, which leverage the innovation of blockchain. Starting as naive digital
currencies, modern day blockchain technologies power smart contracts, decen-
tralized autonomous organization (DAOs), decentralized applications (dApps),
decentralized exchanges (DEX), non fungible tokens (NFTs) and much more.
These decentralized technologies builds the pathway to an open, trustless and
permissionless network, collectively known as Web 3.0. However, the innova-
tion also gave rise to a new range of attacks and exploits only possible due
to the unique nature of the blockchain. Out of these attacks, one of the most
commonly exploited attack on a large scale is frontrunning.

The goal of our research is two fold (a) To build a practical timelock
encryption scheme using the drand randomness beacon. (b) Integrate the
proposed timelock encryption scheme in a blockchain instance as a protection
against frontrunning.

The rest of the dissertation is organised as follows : Chapter 2 defines the
necessary background and cryptography primitives required for rest of the dis-
sertation. Chapter 3 explores the motivation for our research by understanding
the feasibility of various attacks against blockchain technologies. Chapter 4
looks into the literature for novel techniques enabling frontrunning mitigation.
Chapter 5 describes our proposed timelock encryption scheme in detail from a
theoretical perspective. Chapter 6 explores the implementation of the protocol
as a (a) standalone proof of concept and (b) integration with Filecoin. Chap-
ter 7 performs a practicality study of the scheme through performance and
security analysis. Chapter 8 identifies possible drawbacks of using timelock
encryption and finally, Chapter 9 discusses other applications of our scheme
through future work.



Chapter 2

Background

In this chapter, we trace back to the roots of distributed consensus1, its rel-
evance to modern day blockchain protocols and a high level overview of certain
cryptographic primitives, which are essential in reasoning our construction.

2.1 Distributed Consensus
In 2008, the article titled Bitcoin: A peer-to-peer electronic cash system[58]
formalized the notion of distributed consensus in the context of blockchain
space. However, distributed consensus have already been well documented in
literature before, tracing back to the seminal The Byzantine Generals Prob-
lem2[55].

“ Imagine that several divisions of the Byzantine army are camped
outside an enemy city, each division commanded by its own general.
The generals can communicate with one another only by messenger.
After observing the enemy, they must decide upon a common plan
of action. However, some of the generals may be traitors, trying to
prevent the loyal generals from reaching agreement. The generals
must have an algorithm to guarantee that.“

To generalize, any protocol trying to achieve the Byzantine Broadcast,
needs to satisfy three properties. The participating parties can behave arbi-
trarily and deviate from the agreed consensus, referenced under the pseudonym
Byzantine faults. The three properties include :

• Termination - All honest parties must always decide and terminate.

• Validity - If the protocol leader is honest, its value is the final decision
value.

1The term consensus is used loosely here to group any form of abstraction of reaching an
agreement in a distributed setting

2The problem is also referred as Byzantine fault tolerance, Byzantine failure and inter-
active consistency
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• Agreement - All honest parties must agree to the same value.

Lamport et al.[55] provides several solutions to achieve Byzantine Broadcast
under different hypotheses, which were inherently expensive. Among other
solutions, one of the most notable approach to achieve Byzantine Broadcast
is the Dolev Strong protocol[37]. The Dolev Strong protocol, for its successful
operation, depends on two key components, synchronisation and authentica-
tion.

The concept of synchronisation was solved with the introduction of logical
clocks [54], which allows systems to agree on a particular ordering of events in a
distributed setting. On the other hand, authentication can be achieved through
a public key infrastructure and digital signatures. With these components
and operational parameters, the protocol can achieve byzantine broadcast in
the presence of t corrupt nodes, if the protocol is operated for t + 1 rounds.
Collectively speaking, distributed consensus protocols can be generalized as
variants of these five critical parameters[36] :

• Processors synchronous or asynchronous,

• Communication synchronous or asynchronous,

• Message order synchronous or asynchronous,

• Broadcast transmission or point-to-point transmission,

• Atomic receive/send or separate receive and send.

Modern day distributed systems, however, in contrast to single-shot pro-
tocols, require consensus repeatedly to keep the system operational over time.
One such repeated consensus abstraction is known as blockchain.

2.2 Blockchain primitives
The world of blockchain technologies is growing at a rapid pace with state-of-
the-art innovation employed everyday. However, in principal, they have key
similarities between one another, which provides a high level overview of the
blockchain space.

2.2.1 Blockchain
A blockchain or ledger is a data structure of linearly-ordered log of transaction
blocks. A key property of the blockchain is immutability, where previously
added blocks can’t be modified or altered by design. Another key property is
it is append only, where mechanism is provided to only add transactions to the
blockchain. In practice, it is a linked list of blocks using a collision resistant
hash function of the previous block as a pointer reference. Each block carry a
timestamp, nonce and a payload of transactions within a given epoch. Due to
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hash pointers (Fig. 2.1), any modifications to a single block will propagate to
all succeeding blocks in the blockchain.

Figure 2.1: Bitcoin’s blockchain structure [46]

2.2.2 Decentralized network
Decentralisation implies that the blockchain is not maintained by a central
governing authority but rather by a system of distributed nodes. Without
decentralisation, the properties of blockchain can’t be satisfied as the central
authority can publish a new copy of a modified blockchain invalidating previ-
ously existing copies. Decentralisation provides each participating node with
a copy of the blockchain, and if majority are honest, a valid blockchain can be
maintained through various distributed consensus protocols. In doing so, the
blockchain can be made public in an open setting, allowing transparency of
the transactions. This decentralized network is also referred to as peer-to-peer
network or P2P, where each participating node is identified as a peer. The
P2P network model allows anyone to join the network, supports fault toler-
ance mechanisms in case of failures and provides an efficient communication
model like the gossip protocol between the peers.
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2.2.3 Nodes
Nodes are a critical part of the blockchain network, whose key objective is to
maintain the reliability of the distributed infrastructure. In an open, public
blockchain network, individual participating nodes vary greatly in computa-
tional resources and availability, and hence, certain nodes offer special func-
tionality. For example, in Bitcoin3, nodes are classified into three different
types namely

• Full nodes They form the core of the network with retaining complete
history of the blockchain, validating and verifying proposing new blocks
to maintain consensus. However, full nodes cannot propose new block
themselves.

• Miner nodes Miner nodes are specialized full nodes, which can pro-
pose new blocks by solving a cryptographic challenge and validating it
among other full nodes. Since the process is computation intensive, block
producers are rewarded in the form of cryptocurrency or token of the net-
work.

• Light nodes Light nodes (SPV) are typically payment wallets, which are
small and size and carry only specific blockchain history. They depend
on full nodes for verification and validation.

Nodes in the network also have a data store called mempool, where all
the valid transactions wait to be confirmed by the decentralized network. The
mempool is public and can be observed by any other nodes in the network.

2.2.4 Cryptocurrency
Cryptocurrency is a form of digital asset designed to work as a medium of
exchange outside of normal currencies, where ownership to individual coins are
recorded on the blockchain. Through modern cryptography, the blockchain can
sufficiently secure transaction records, control the creation of additional coins,
and verify the transfer of coin ownership. A transaction happens between a
sender and a receiver, whom are identified through their public key addresses.
Rather than validating one transaction at a time, often times the protocol
would want to use batching to improve throughput — a block is exactly a
batch of transactions per epoch of the protocol which are validated through
their consensus mechanism.

2.2.5 Consensus
Blockchain technologies are decentralized at their core and hence, requires a
intelligent distributed consensus to make decisions over the entire infrastruc-
ture. Based on the design of their protocol, many consensus algorithms have

3https://bitcoin.org/en/
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been proposed in the last decade. Among them, the most notable ones include
Proof-of-Work (PoW) and Proof-of-Stake (PoS).

• Proof-of-Work In PoW, at the beginning of each epoch, the existing
miner nodes try to solve a cryptographic challenge for that round. The
problem’s difficulty is essentially defined by the parameters of the net-
work to maintain a constant epoch (around 10 minutes in bitcoin). The
first miner to solve the problem and gets it validated by majority of the
full nodes is chosen as the block producer. The miner adds the next
block, and new coins are minted and provided to the miner as reward.
Repeated consensus is achieved by repeating the process for each epoch,
providing a reliable distributed consensus. Recall, one of the main re-
quirements of distributed consensus is Validity, where if the protocol
leader is honest, it’s decision is final. PoW allows the network to find a
honest protocol leader each round, since, by design, it’s nearly impossible
to forge a solution for the cryptographic problem without investing the
necessary intensive computation.

• Proof-of-Stake In Proof-of-Stake, the validator (aka miner in PoW)
are selected in proportion to their quantity of holdings in the associated
cryptocurrency. This way, instead of utilizing energy to answer PoW
puzzles, a PoS miner is limited to mining a percentage of transactions
that is reflective of their ownership stake. For instance, a miner who
owns 3% of the coins available can theoretically mine only 3% of the
blocks.[43]

2.2.6 Smart Contracts
While the inception of blockchain technologies is identified primarily through
the foundation of cryptocurrencies, the past decade has seen growth far beyond
the underpinning digital currency. Notably, a significant use case of blockchain
technologies is smart contracts, pioneered by Ethereum4. A ”smart contract” is
simply a program that stored on the Ethereum blockchain and executed on the
Ethereum Virtual Machine (EVM). It’s a collection of code (its functions) and
data (its state) that resides at a specific address on the Ethereum blockchain[1].

Each smart contract has the properties of a regular user, having a balance
and ability to participate in transactions. However, they are automated, and
once deployed on the blockchain, they run as programmed and enforce rules
like a regular contract via code. User accounts can then interact with a smart
contract by submitting transactions that execute a function defined on the
smart contract. Smart contracts can not be deleted by default, and interactions
with them are irreversible.

4https://ethereum.org

https://ethereum.org
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Deploying a contract on the blockchain is similar to a transaction and
hence, costs a fee. However, the fees is significantly higher and dependent on
the amount of instructions to be executed in the EVM. Since the amount of
instructions executed per block is limited, a higher transaction fees provides
a higher precedence in that block’s execution. This is referred to as Priority
Gas Auction (PGAs), which allows a special kind of exploit known as miner
ex tractable value (MEV).

2.3 Group
A group G is a finite or infinite set of elements with a group operation that to-
gether satisfy the four fundamental properties of closure, associativity, identity
and inverse. Let · represent the group operation.

• Closure - If a, b ∈ G, then a · b ∈ G

• Associative - For a, b, c ∈ G, we have (a · b) · c = a · (b · c)

• Identity - ∀a ∈ G, there exists an identity element i such that a · i =
i · a = a

• Inverse - For each a ∈ G, there exists an element b = a−1 ∈ G, such
that a · a−1 = a−1 · a = i

A cyclic group is a group where each element can be generated by a single
element using the group operation. A cyclic group is denoted by G = 〈g〉,
where g is the generator of the cyclic group.

2.4 Field
A field F is a finite or infinite set of elements defined over two operations (+, ·)
that together satisfy the following properties.

• Associate - (a+ b) + c = a+ (b+ c); (a · b) · c = a · (b · c)

• Commutative - a+ b = b+ a; a · b = b · a

• Additive Identity - There exists a 0 ∈ F such that ∀a ∈ F, a+ 0 = a

• Multiplicative Identity - There exists a 1 6= 0 ∈ F such that ∀a ∈ F,
a · 1 = a

• Additive Inverse - ∀a ∈ F, there exists an additive inverse denoted by
(−a) such that a+ (−a) = 0

• Distributivity of multiplication over addition : a · (b + c) = (a ·
b) + (a · c)
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• Multiplicative Inverse - ∀a ∈ F & a 6= 0, there exists a multiplicative
inverse denoted by a−1 such that a · a−1 = 1

Given any prime number p, the set Z/pZ forms a finite field under addition
and multiplication. This field is denoted Fp and used extensively in elliptic
curves.

2.5 Collision Resistant Hash Function
A hash function Π = (Gen,H) with key generation function Gen and a keyed
compression function Hs : {0, 1}l

′ (λ) ← {0, 1}l(λ) for some key s ← Gen(λ)
is collision resistant if l′(λ) > l(λ) and for any probabilistic polynomial time
(PPT) adversary A :

Pr[HashCollA,H(λ) = 1] ≤ negl(λ)

Here, s is public and it is implicit that l is determined by λ. So, a common
way of representing a hash function5 for arbitrary lengths include H : {0, 1}∗ ←
{0, 1}l

2.6 Digital Signatures
Digital Signatures are one of the primary application of public key cryptogra-
phy, which serves as a backbone for functionalities provided by the blockchain.
Digital signatures provide both sender verification and non repudiation and
thus, making public verifiability and transferability possible.

Formally, a digital signature scheme provides the tuple of efficient algo-
rithms Gen, Sign, V erify as follows, where λ is the security parameter :

• Gen(1λ) - Generates a public key - private key pair pk and sk respectively.

• Sign(sk,m) - The sign algorithm takes the secret key (sk) and the mes-
sage (m) as input and generates a signature σ as output.

• V erify(pk, σ) - The verify algorithm takes the public key (pk) and sig-
nature σ as input, and outputs 1 if the signature is valid, else 0

Each DS scheme satisfies the following properties :

• Determinism - V erify algorithm must always be deterministic.

• Correctness - Every DS scheme must satisfy the correctness property.

∀λ ∈ N,∀(sk, pk)← Gen(1λ),∀m ∈M : V erify(pk, Sign(sk,m))→ 1
5The HashColl game is not included here. Please refer [48]
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• Unforgeability - A DS6 scheme is existentially unforgeable under cho-
sen message attacks (EUF-CMA) if for all PPT adversaries there exists
a negligible function negl such that for all λ ∈ N , we have

Pr[Gameeuf−cmaA,DS ](λ) ≤ negl(λ)

In our construction, we extensively use Boneh–Lynn–Shacham (BLS) sig-
nature scheme [22], which achieves unforgeability through elliptic curve cryp-
tography and bilinear pairings.

2.7 Elliptic Curve Cryptography
Elliptic Curve Cryptography (ECC) is an approach to public key cryptography
based on algebraic structure and operations of elliptic curves over the finite
field Fp given by the prime number p. The main advantage of using ECC is
that they allow smaller key size in compared to the other schemes like RSA
and Diffie-Hellman over the plain Galois fields. For example, the equivalent
security of 1024 bits of RSA keys is provided by 160 bits of ECC keys.

2.7.1 Curve Equation
The elliptic curve (Fig. 2.2) is a cloud of points, which satisfy the curve
equation y2 = x3 +ax+ b mod p. In the equation, all the parameters x, y, a, b
belong to Fp. The parameters x and y are coordinates on the plane and
coefficients a and b determine points on the curve7.

Each elliptic curve must satisfy the following properties,

• It must have distinguished point at infinity O

• The curve coefficients must satisfy the equation below to guarantee no
singularities in the curve.

4a3 + 27b2 6= 0

Other domain parameters which are useful in cryptographic primitives
include,

• G - The generator or base point of the curve.

• n - The order of the curve generator point G.

• h - The co factor of the curve. It is the quotient of the number of
curve-points.

6The DS forgery game is not included here. Please refer [48]
7For the sake of brevity, this section doesn’t describe in detail about projective geometry
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Figure 2.2: Elliptic Curve of the form y2 = x3 + ax + b mod p

Hence, an elliptic curve is defined as tuple of six parameters (p,a,b,G,n,h).
The points on the curve are represented by their affine projection.8 Points,
which are represented in affine coordinates are vectors with an x and y com-
ponent but, they are over Fp. For example, the point A is represented as

A =
(
ax
ay

)

2.7.2 Point Addition
Point addition of two points P and Q where P 6= Q is given as follows,

R = P +Q =
(
px
py

)
+
(
qx
qy

)
=
(
rx
ry

)
, P 6= Q

s = py − qy
px − qx

; rx = s2 − px − qx; ry = s(px − rx)− py

Note, with point at infinity O, for any point P

O + P = P +O = P

2.7.3 Point Doubling
Addition of identical points is known as point doubling and for any point P, it
is given as follows,

R = P + P = 2P =
(
rx
ry

)

8In implementation, points are represented using Jacobian coordinates for better perfor-
mance.
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s = 3p2
x + a

2py
; rx = s2 − 2px; ry = s(px − rx)− py

2.7.4 Scalar Multiplication
Multiplication of a scalar over a point can be performed by repeated point
addition and is defined as follows,

R = kP = P + P + P + ..(k times)

However, this is computationally inefficient and can be sped up by utiliz-
ing the exponentiation by squaring technique. The technique utilizes binary
representation of the scalar value, to perform repeated point doubling or point
addition based on the binary value. The technique takes only log(k) point
additions in contrast to vanilla consecutive k point additions.

2.7.5 Elliptic Curve Discrete Logarithm Problem
The Elliptic Curve Discrete Logarithm Problem (ECDLP) forms the basis of
mathematical hardness, upon which several cryptographic schemes are derived
and built upon.

Formally, Let E be an elliptic curve over a finite field Fp. Given two points
P,Q ∈ E(Fp) such that Q ∈ 〈P 〉, it is hard9 to determine a scalar k such that,
Q = kP

In our construction, we extensively use the BLS12-381 curve 10, which also
satisfies a special property - pairing friendly

2.8 Bilinear pairing
Let Fp be a finite field over prime p, G1, G2 be two cyclic groups of prime order
p and GT be another cyclic group of order of a product of p.

A pairing is a map defined as ê : G1 × G2 → GT , which satisfies the
following properties:

• Bilinearity

∀a, b ∈ F∗p;P,R ∈ G1;Q ∈ G2; we have

ê(aP, bQ) = ê(P,Q)ab

ê(aP,Q) = ê(P,Q)a = ê(P, aQ)

ê(P +R,Q) = ê(P,Q) · ê(R,Q)

9For computationally bound adversaries, especially probabilistic polynomial bound
10https://electriccoin.co/blog/new-snark-curve/

https://electriccoin.co/blog/new-snark-curve/
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• Non-degeneracy

∀P ∈ G1, ∀Q ∈ G2 : ê(P,Q) 6= IGT

where IGT
is the identity element of GT

• Computability There is an efficient method to compute ê(P,Q)

In the case of elliptic curves, particularly BLS12-381, we have the following
groups defined

• G1 is over the elliptic curve E(Fp) of the form y2 = x3 + 4

• G2 is over the elliptic curve E(Fp12), where Fp12 is the 12th field extension
of Fp. However, Fp12 is extremely inefficient to compute over and hence
we employ a twist, which is a coordinate transformation to transform
higher degree field extension to a lower degree field extension11. In the
case of BLS12-381, the curve employs a sextic twist, thus reducing the
degree by a factor of six.

Hence, G2 is over the elliptic curve E(Fp2) of the form y2 = x3 + 4(1 + i)

• GT is over the similar field extension Fp12

Bilinear pairings are primarily used in the cryptography of Identity based
Encryption(IBE) and recently zkSNARKs, which are both significant in our
constructions.

2.9 zkSNARKs
zkSNARKs stands for “Zero-Knowledge Succinct Non-Interactive Argument of
Knowledge”. Intuitively, it refers to a proof construction, where a prover can
prove the possession of certain information to a verifier without leaking any
information related to the secret and no interaction between the prover and
the verifier. zkSNARKs comes under the research domain of Public Verifiable
Computing.

In general, the zkSNARKs is described by a tuple of algorithms namely
Gen, Prove, V erify as follows

• Gen - The setup phase of the protocol which generates the two strings,
namely the proving key pk and the verifying key vk. It is typically ran
by a trusted third party.

• Prove - The prove algorithm takes proving key pk, statement u and
witness w as input and outputs the proof π.

11The complex numbers are a quadratic extension of the real numbers.
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• V erify - The verify algorithm takes the verification key vk, statement u
and the proof π as input and outputs 1/accept if the proof is valid else
0/reject.

In modern zkSNARK constructions, the program that is to be checked
is compiled into a quadratic equation of polynomials : t(x)h(x) = w(x)v(x),
where the equality holds if and only if the program is computed correctly. The
prover wants to convince the verifier that this equality holds [42]. Conserva-
tively, construction of the above zkSNARKs comprises of 5 distinct stages of
transformation12.

• Initial computational program.

• Arithmetic circuit, where each step is composed of basic arithmetic op-
erations.

• R1CS (Rank 1 Constraint System), where each constraint corresponds
to a single logic gate.

• QAP (Quadratic Arithmetic Programs), which are obtained using La-
grange interpolation.

• zkSNARKs from QAPs through either homomorphic encryption or bi-
linear pairings.

The construction must satisfy the properties of zkSNARKs listed as below,

• Succinct - The size of message is small compared to the size of the
actual computation itself. This is achieved through random sampling at
the QAP stage, where the verifier randomly chooses a point and evaluates
the polynomial at that point to verify the proof with very high probability
(not deterministic). This reduces both the proof size and the verification
time tremendously.

• Non interactive - In zkSNARKs, there is only the setup phase and a
single transfer of proof from prover to verifier. Thus, there is little to
zero interaction.

• ARguments - The verifier is protected against only computationally
limited provers. However, this is the case for domain of public key cryp-
tography, where schemes offer only computational soundness.

• of Knowledge - It is nearly impossible for the prover to construct a
proof without knowing the witness string for that statement.

12Mathematical detail of these transformations are out of scope for our construction



2.9. zkSNARKs 22

• zero knowledge (zk) - The verification happens without revealing any
information beyond the validity of the statement itself, particularly the
witness string itself.



Chapter 3

Motivation

In this chapter, we motivate our work by looking at the attacks against
blockchain technologies and exploring the severity of threat levels to show
frontrunning attacks as one of the major threats in the space. Cloud Secu-
rity Alliance [30] provides a comprehensive list of 203 vulnerabilities or attack
vectors over modern blockchain platforms. However, we only discuss the most
common attacks applicable to majority of the platforms and omit familiar at-
tacks like DDoS and Phishing, which are not specific to blockchain technology.

3.1 Double Spending
Before the case of attack on blockchain technologies, the novel innovation
was targeted at solving two major problems namely The Byzantine Generals
Problem[55] and the double spending problem. The double spending problem
is a scenario where the same digital currency can be spent more than once
because a digital currency has no physical standing. Since, it’s based of a
digital record, it can falsified or duplicated.

Nakamoto’s consensus [58] from 2008 tackles the problem by making the
transactions public and using PoW to choose a order of transactions for a
particular block. This block is then added to the ledger, and the transactions
part of that block are the only confirmed transactions. Contrary to account
system, Bitcoin utilizes the UTXO model (unspent transaction output), which
refers to the amount of cryptocurrency someone has remaining after executing
a transaction. This output, will serve as the input for the next transaction
made by the same user. Once the miner solves the PoW challenge, in order
for the transaction to be included in a block, the outputs that it spends from
must have not been spent by any other transaction in the blockchain nor by
any other transaction in the block. This mechanism is also referred to as a
distributed time-stamping server.

In the case of copies of ledger with simultaneous transactions, where each
report a different state, the longest one is always accepted as valid, since it
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was mined with the most amount of work done. Hence, to forge a transaction
into an already added block, the node must redo the PoW for that block and
subsequent other blocks due to the cascading effect of hash based linked list.
Under a stable consensus, this is practically impossible and makes a distributed
blockchain immutable.

However, there are two key takeaways from this approach,

• The transactions are protected as long as there is stable consensus.

• The miner’s ordering of transactions for a particular block is final.

3.2 51% Consensus Attack
Since, the validity of the transactions depend upon the stability of the consen-
sus, there have been several attacks theorized to destabilize consensus. One
of the most notable attacks is the 51% consensus attack. In the case of PoW,
the success rate of the miner solving the challenge is directly proportional to
the amount of computational resources invested. Hence, if someone controls
51% of total computational resources available, it is guaranteed that they will
solve the mining challenge with very high probability.

In that scenario, they could add new blocks on their own with forged
transactions, thus making double spending possible. In a truly distributed
network, this attack would be impossible. However, to improve the chance of
mining success, mining pools combine different node’s computational resources
for mining and in return reap the rewards of mining in proportion to their
computational resource contributed to mining. According to btc.com 1, the
majority of computational resource of bitcoin is only distributed among four
mining pools (Fig. 3.1). Hence, if they collude, it is possible to destabilize
bitcoin’s consensus.

In most mature blockchain networks, since the mining block reward is
profitable, the chance of consensus destabilization is minimal. But, several
networks have indeed suffered the 51% attack, most notably Bitcoin Gold [53]
in 2018 and 2020.

3.3 Sybil Attack
A Sybil attack is a variant of consensus destabilization, where a large central
authority impersonates as multiple nodes through fake pseudonyms. A similar
protection rationale for 51% Consensus attack with respect to PoW applies to
large scale Sybil attacks as well, thus making the mature networks relatively
safe to Sybil attacks.

In the case of targeted Sybil attacks, the attacker can deploy a large
number of fake nodes around a target miner to delay/drop the propagation of

1https://btc.com/stats/pool?pool_mode=year

https://btc.com/stats/pool?pool_mode=year
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Figure 3.1: Bitcoin’s mining pool distribution - 2021

Figure 3.2: A Sybil Attack
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blocks (Fig. 3.2). A variant of this attack[71] only requires 32% of the total
computing power to achieve double spending.

3.4 Flawed Cryptography
Blockchain technologies are effectively powered by mathematical proven cryp-
tographic protocols. However, in implementation, due to human error or mis-
understanding, there have been several instances of flawed implementations
of cryptography be actively exploited. Notably, Mt.Gox declared bankruptcy
due to a sophisticated attack of transaction malleability in Bitcoin. Transac-
tion malleability, allowed one to alter the nature of the unique identifier of the
transaction by modifying the underlying user signature in the transaction data.
This was fixed in 2017, by introducing SegWit (Segregated Witness), which
removed the signature from the transaction identifier calculation. IOHK was
proved to be using a weak hash function known as curl-p and successively it’s
signature scheme was broken in 2020[45]. The ECDSA signature algorithm in
Bitcoin is one of it’s key components. However, it suffers a weak randomness
due to insufficient entropy available[24].

3.5 Vulnerable Smart Contracts
Smart Contracts are a set of rules in the form of programmable code, exe-
cuted in a distributed stack based virtual machine. In the case of Ethereum,
it is known as Ethereum Virtual Machine (EVM) and the programming lan-
guage is Solidity. However, vulnerabilities in the source code of the smart
contract or the EVM itself is a major source of attack on Ethereum. A com-
mon form of smart contract exploit occurs through a reentracy attack, where
calling external contracts can take over the control flow, and make changes to
your data that the calling function wasn’t expecting. This exploit was success-
fully used in the infamous DAO hack[4] that allowed siphoning of $50 million
worth of Ether. Adding to that, since blockchain is immutable, a deployed
contract can’t be updated when zero day exploits are identified in the source
code. Hence, the irreversible damages caused by a vulnerable source code in
Ethereum is of significant magnitude in comparison to traditionally deployed
web services.

3.6 Frontrunning
In financial markets, frontrunning is an illegal act of utilising insider informa-
tion to buy or sell stocks before the information is made public to make sizable
profits. In the case of cryptocurrencies, once a transaction is made by a sender,
it is sent through a series of nodes before reaching the miner node, who par-
ticipates in the consensus and produces the next block with that transaction.
This series of nodes is often referred to as dark forest and the time taken
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to reach the miner is called propagation delay. Since transaction2 infor-
mation is public through the dark forest, before it’s validated, other nodes in
the network (typically bots) try to find arbitrage through those transactions
among other exchanges. Once identified, they utilize various mechanism to get
their transaction before or after the target transaction within the same block
to achieve profit. This version of frontrunning is exploited everyday among
exchanges and DeFi institutions.

3.6.1 Variants
Frontrunning attacks are constantly evolving with new strategies and exploit
vectors being discovered everyday. ConsenSys[31] provides a definite taxonomy
on the three variants of frontrunning types common in smart contracts,

• Displacement- The attacker tries execute his smart contract before the
target smart contract but however it’s not important that the target
smart contract is executed.

• Insertion - The attacker tries to execute his smart contract before the
target smart contract and its import that the target smart contract is ex-
ecuted afterwards. This is the traditional front-running scenario and the
most prevalent variant. Ethereum nodes intuitively, order the transac-
tions based on their gas price and address nonce. This, however, results
in a priority gas auction (PGAs) between arbitrage bots in the network
to get their transaction included in the block currently being mined by
paying a higher gas price.

• Suppression - The attacker tries to execute his smart contract before
the target smart contract and suppress the execution of the target smart
contract either through exhaustion of resources or high gas prices.

In all of the variants, the size of the attacker and target transactions might
vary significantly to achieve maximum profits.

3.6.2 Miner Extractable Value
While arbitrage bots can take advantage of visible transactions through the
dark forest, privileged nodes in the network have a significant advantage com-
pared to full nodes. These are miner nodes3, who essentially finalize the order
of transactions and propose the block.

Miner extractable value (MEVs) is a special class of frontrunning
attacks, where a sensible profit is made by a privileged actor like

2Smart Contracts are inherently transactions and are semantically interchangeable in
terms of explanation at certain places.

3Well-positioned relay nodes are not considered as they use propagation delay to achieve
reordering of transactions, which are out of scope for our construction
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miner through their ability to arbitrarily include, exclude, or re-
order transactions from the blocks they produce.

Other nodes in the network, as mentioned, are capable of frontrunning at-
tacks. However, due to the unique position of miner as block producer, a miner
is capable of backrunning, where he places his own transactions after a tar-
get transaction to take advantage of the market fluctuations. MEV strategies
are constantly evolving and have been difficult to monitor from an analytics
perspective.

3.6.3 Sandwich attack
A sandwich attack is another MEV exploit, where the miner sandwiches his
own transaction between two target transactions to make a profit. The strategy
is based on the idea of manipulating the price of an cryptocurrency as a result
of buying/selling the same. This is a popular attack scenario over decentralized
exchanges (DEX) and incurs a significant loss of profits. However, the sandwich
attack is only profitable if the price before and after the trade is large enough
to accommodate the network and exchange fees.

3.6.4 Time Bandit attack
An extreme case of MEV exploitation is a time-bandit attack, which can desta-
bilize the consensus. In this scenario, the MEV exploits became so lucrative
that they net a higher profit than the miner block reward. Hence, to further
exploit MEVs and maximize the profit, the miner deviates from the consen-
sus and starts restructuring previously confirmed blocks for exploitation. This
is indeed achieved by using the resulting MEV to subsidize a 51% attack to
rewrite required past blocks in the history, sandwiching previously confirmed
transactions and thus destabilizing consensus[32].

3.6.5 Feasibility
While mounting a frontrunning attack may sound simple by definition, prac-
tically exploiting a attack requires consideration of several issues and the re-
quirement of high frequency trading equipment and well place nodes in the
network. However, MEVs have overcome this obstacle and is constantly being
exploited on different networks.

Flashbots website 4 shows a cumulative representation of MEV being ex-
ploited on the Ethereum Network (Fig. 3.3). Since January, a total sum of
$720 million (incl. tx fees) have been profited through MEV, which establishes
the scale of the exploitation. While other attacks documented depend on ob-
scure or zero day vulnerabilities to achieve their attack, MEV is based on open
mempools. The public availability and high payoff has attracted a large num-
ber of skilled attackers to discover new ways to exploit MEV. Thus it exists

4https://explore.flashbots.net/
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Figure 3.3: Cumulative extracted MEV since January 2020

as a recurring exploit to be mitigated, and, hence motivating our approach
towards timelock encryption as a solution for mitigating frontrunning attacks.



Chapter 4

Related Work

Preventing frontrunning attacks have been well studied in the literature,
since they have been present from the dawn of traditional financial markets.
In this chapter, we perform a review of the literature on frontrunning mitiga-
tion techniques and identify the position our construction over the literature.
Broadly speaking, the mitigation approaches are centered among three do-
mains namely (a) Economics, (b) Ordering Fairness and (c) Confidentiality.
Our construction is an extension of the confidentiality approach using timelock
encryption.

4.1 Economics
Game theoretic approach to frontrunning protection stems from traditional
financial exchanges, who employ an order book managed by the exchange. An
order book is an electronic list of buy and sell order/bids for each stock orga-
nized by their price level. This promotes transparency among the traders and
identification of market manipulations. However, a negative result of this ap-
proach allows frontrunning through network delay, by using faster connections
to trading exchanges and low-latency trading algorithms[56].

In the case of decentralized exchanges for cryptocurrencies (DEX), there
is no single central authority to maintain an order book. This created the need
for an automated system for matching buy/sell prices based on bid/ask prices
in a decentralized setting, which was solved by Automatic Market Makers
(AMMs).

4.1.1 Automatic Market Maker (AMM)
AMMs are smart contracts maintaining a sufficient liquidity pool of various
assets part of the DEX, where users can swap between the assets based on
pricing formulas. AMMs are inherently hard to design and implement because
they involve sophisticated economic investment mechanism. Due to the way
AMMs work, a large liquidity pool is required to prevent less price slippage on
large orders. AMMs are successfully deployed in major exchanges UniSwap[8],
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SushiSwap[2] and PancakeSwap, which have market cap of 20%, 13% and
6% respectively[3]1. Most AMMs are based off Ethereum and Binance Smart
Chain and use the foundation for x ∗ y = k market makers[66] or constant
product market makers to protect against frontrunning.

Bartoletti et al.[13] provide a formal model of AMMs tailored for decen-
tralized finance, formalizing the notion of frontrunning as the arbitrage prob-
lem. Bentov et al.[17] proposed a new DeFi exchange, which uses AMMs on
trusted hardware to prevent frontrunning attacks. Zhou et al.[73] coined the
protocol Automated Arbitrage Market Maker (A2MM), proposing uniting of
different AMMs under the same chain to achieve automatic MEV collection
instead of competitive MEV, which could destabilize consensus. Ciampi et
al. [12] promotes fair exchange through their Σ-trade protocol, where hybrid
exchanges are carried out over both on/off chain. The frontrunning protection
is achieved through cryptographic mechanisms that allow verifiability of the
execution trace of the market maker.

However, AMM are still susceptible to frontrunning by miners, who can
reorder transactions to limit the effect of AMMs. Several attacks [33, 38,
62, 72, 74] have been proposed to exploit currently used AMM for profitable
MEVs. Angeris et al. [9] showed it’s impossible to build a privacy based
market makers under reasonable adversary models based on current design of
the market makers.

4.2 Ordering Fairness
A second approach to tackling frontrunning attacks is ordering fairness, where
transaction ordering is done under a certain set of rules to ensure fairness
of profits. There are two approaches to achieving fairness in a distributed
system (a) No one receives a profit and (b) Everyone receives an equal profit.
The first approach is studied through various ordering mechanisms, where the
total achievable profits through frontrunning is nullified or redistributed back
into the system. The second approach explores the fair ecosystem for MEV
extraction.

It is worth mentioning here, that in a distributed setting, achieving per-
fect fairness is impossible. This is a consequence of Condorcet paradox from
social choice theory, in which collective preferences can be cyclic, even if the
preferences of individual voters are not cyclic [49].

4.2.1 Transaction ordering
Transaction reordering stems from the fact that one of the remediation is
to remove the benefit of frontrunning from the protocol. First In First Out
(FIFO) model of transaction order is a fair ordering, but, however, not possible

1dYdX with market cap 20% is not considered, since it uses limit order books instead of
AMMs



4.2. Ordering Fairness 32

in decentralized setting due to the propagation delay to different nodes in
the network. Although, certain protocols have achieved FIFO by sacrificing
true decentralization and employing a trusted third party to assign sequence
number to transactions[68].

Another form of ordering can be achieved from certain uninfluenced pseu-
dorandomness part of the transaction. Canonical Transaction Ordering Rule
(CTOR)[6] in Bitcoin ABC is an example, where transactions are ordered
based on the lexicographical order of their hashes. However, this can still be
frontrun by adding void data to the transaction to manipulate hashes and
bypass CTOR with relatively less complexity. Other proposals include trans-
actions forcing the order themselves through requiring a particular state for
execution.

Several protocols use a directed acyclic ordering (DAG)[7, 34] ordering of
transactions, specifically from the context of improving consensus latency and
throughput of the protocol. However, compared to a linear ordering in a block,
a DAG ordering can have relatively higher complexity to frontrun.

Finally, certain protocols define their consensus protocol over fair order-
ing of transactions. HashGraph[11] implements the gossip the gossip protocol,
where nodes gossip the transactions history itself in the form of a hashgraph
instead of traditional individual transactions. Aequitas[50] protocol provides
a fair-ordering consensus for both leader and leaderless settings with asyn-
chronous and synchronous communication mechanism. The protocol also mod-
els their upper-bound on fairness using the Condorcet paradox.

4.2.2 Flashbots
The second component of ordering fairness has its origin from distributing
the profits equally. Flashbots23 is a research organization particularly focused
on this activity to achieve permissionless, transparent, and fair ecosystem for
MEV extraction. It stems from their three main goals (a) Democratizing Access
to MEV Revenue, (b) Bringing Transparency to MEV Activity and (c) Redis-
tributing MEV Revenue.

Two notables proposals from Flashbots research include MEV-SGX [18]
and Proposer/block builder separation[67]. In MEV-SGX, the nodes part of
the auction are required to run their software in a secure enclave like Intel
SGX to guarantee that the software utilized for the auction is not tampered
or modified. This is done by remote attestation handshakes prior to the en-
gagement on the auction software. In Proposer/block builder separation, the
goal is to separate the role of transaction ordering from the block proposer.
Instead of selfish extraction of MEVs, the proposer depends on entities called

2https://docs.flashbots.net/
3Flashbots mainly concentrate on Ethereum, however the research is applicable to several

blockchain technologies
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block-builder who propose variants of the block and associate a fee to it for the
proposer. Here, the choice of the proposer is narrowed down to choosing the
variant with highest fee, which can be enforced by cryptographic techniques.
On the other hand, it promotes an open market for MEV extraction through
block-builders and thus achieving the primary goals of flashbots.

4.3 Confidential Transactions
The final section of frontrunning mitigation explore over cryptographic tech-
niques to achieve confidentiality of transactions, so attackers would not be able
to explore the contents of the transactions and execute their attack. While
zkproofs and timelock encryption are two major areas used to research mitiga-
tion for front running, secure multiparty computation protocols have recently
been shown capable. Notably P2DEX[14] uses Insured MPC to build a uni-
versally composable privacy preserving decentralized exchange, while being
financially incentivised to behave honestly.

4.3.1 Zero knowledge proofs
The notion of Confidential transaction was first coined by Gregory Maxwell
for Bitcoin[69], which allows the amount transferred visible only to the par-
ticipants of the transaction using Pedersen’s commitment. To facilitate public
validation of the blockchain, zero knowledge proofs of the validity of the trans-
action must be submitted.

Zero knowledge proofs suitable for transactions include zkSNARKs (re-
quires a trusted setup) [16], zkSTARKs (large proof size) [15] and Bulletproofs
(short and doesn’t require trusted setup)[26]. Variants of these zero knowledge
proofs have been used in privacy preserving smart contracts like Hawk[52] and
Ekiden[29] and decentralized applications (dApps) like AZTEC[70] and a pro-
posed merge between Zcash and Ethereum[41].

4.3.2 Commit/Reveal
In a commit/reveal scheme, a user can commit to a digital value while keeping
it secret (hiding) and reveal only that value (binding) at a later time of his
choosing. In the case of the blockchain transactions, the transactions are
hidden from miners and other frontrunning nodes using a commitment, which
is only revealed after a ordering of transactions for that block has been decided.
Ideally, this should allow the adversaries to learn no information about the
transactions and hence, influence the ordering for frontrunning4.

A practical commit/reveal scheme was first seen in NameCoin[47], which
allowed users to commit to a domain name. After the first transaction is

4While the transaction itself is hidden, the metadata surrounding it needs to be public
for consensus, which promotes certain kind of attacks. This is one of the major drawbacks
of the scheme.



4.3. Confidential Transactions 34

confirmed, the details of the transactions are revealed. This protects the do-
main name being frontrunned by privileged actors. An enhanced version of
commit/reveal scheme is Submarine Commitments[25]. In submarine com-
mits, a user initiates a commit transaction and locks up the required gas to a
Submarine address, which is indistinguishable from a freshly minted Ethereum
address. Once the transaction order is confirmed, the user issues a reveal trans-
action, which reveals the details of the contract and the Submarine address
issues a unlock transaction (based off a smart contract), which relocates the
funds for the target smart contract’s execution, essentially thwarting influence
of frontrunners (Fig. 4.1)5

Figure 4.1: Submarine commitment

4.3.3 Timelock Encryption
Timelock Encryption is a variant of commit/reveal scheme, where the reveal
is not bound to the user, but to time. In other words, the secret will be
automatically revealed after a certain amount of time in contrast to atomic
reveals. After the agreed time elapses, the secret would be deemed public.
The timelocking mechanism is a perfect fit for frontrunning protection, as the
transaction needs to protected only until the sequencing is finalized, which is
a fixed period of time.

5https://libsubmarine.org/

https://libsubmarine.org/
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Timelock encryption can be realized by the notion of a randomness bea-
con coined by Rabin[63] or a distributed key generation (DKG) protocol. In
the protocol, multiple parties co-operate to provide a verifiable, public source
of randomness with a very high entropy at regular intervals of time. A time-
lock encryption scheme essentially uses this source of randomness at regular
intervals and other novel cryptographic techniques to lock a transaction to a
particular round of randomness. The key requirements for the scheme is hon-
est majority, where if majority parties collude, the scheme collapses. While
timelock encryption has been theorized, most protocols apply different appli-
cations to their randomness beacons or there have been no concrete proof of
concepts.

Helix protocol uses randomness beacon to elect the leaders for fair con-
sensus mechanism [10]. drand is a publicly verifiable randomness beacon [65],
which powers Filecoin’s proof of replication [40]. Ouroboros[51] and Ouroboros
Praos[35] use a randomness beacon to power their provable Proof of Stake pro-
tocol.

Novelty in randomness beacons construction stems from several years
of research on Verifiable Secret Sharing and threshold cryptography.
SCRAPE[28] protocol proposes an optimized construction for the beacon
using linear exponentiations independent of the threshold. Groth[44] gave a
new distributed key generation construction in a non interactive setup, a new
paradigm is threshold cryptography. While randomness beacon constructions
depend on honest majority, Verifiable Delay function can work on stronger
notions of security[19].

A Verifiable Delay Function (VDF)[19] requires a specified number of se-
quential steps to evaluate, yet produces a unique output that can be efficiently
and publicly verified. A timelock encryption can be built around VDFs by
committing a message m to the value of the unique output, which is produced
after a certain delay. The set of sequential steps determine the delay or in
the other words the round time of the randomness beacon. VDF construction
with reduced computation was shown by Pietrzak[61] using a trusted setup.

4.4 Our Construction
In our construction, we will be modeling a timelock encryption based on the
drand randomness beacon and Identity Based Encryption (IBE). Within the
time of our research, there have been new protocols which similarly utilize
a distributed key generation algorithm to achieve timelocking. Shutter[59]
and Anoma[5] are parallel implementations, with a similar goal of removing
frontrunning from the consensus using timelock encryption.
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Timelock Encryption

In this chapter, we delve into detail of our practical construction for time-
lock encryption using various building blocks of innovation. The novelty of our
scheme stems from its construction, practicality and proposed road maps for
integration into various blockchain technologies.

5.1 Distributed randomness - drand
drand1 is a public distributed randomness beacon, which provides verifiable,
unpredictable and unbiased randomness with high entropy. In this section, we
look under the hood of drand’s composition to deconstruct its building blocks.

5.1.1 BLS Signature
A core part of drand’s protocol and our construction is built from the BLS
digital signature scheme[22]. The BLS Signature Scheme provides a tuple of
three algorithms (Gen, Sign, V erify) as follows. Since, elliptic curve cryptog-
raphy is used to build the construction, we will use its primitives to define the
scheme.

• Setup - The protocol generates the following public parameters which
are agreed among all participants2.

1. Cyclic Groups G1, G2 and GT of prime order p, where G1 = 〈G〉

2. A pairing ê : G1 ×G2 → GT

3. A hash function H : {0, 1}∗ → G2

• Gen(1λ) - Generates a public key pair of sk $←− Zq and pk = skG

• Sign(m, sk) - Generates σ ← skH(m)
1https://drand.love/
2While the original scheme uses G1 for hashing to a curve, we will use G2 to stay syn-

chronous with the BLS12-381 curve
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• V erify(σ,m, pk) - The algorithm outputs 1/accept if

ê(pk,H(m)) = ê(G, σ)

else 0/reject.

The correctness of the scheme is straightforward from the bilinear pairings.
The scheme is secure under the Computational co-Diffie Hellman problem in
a Gap Diffie-Hellman Group (co-GDH) [23].

5.1.2 Threshold BLS Signature
While BLS signature is suited for a two party setting, it can be extended
into a n party scheme. Now, we define the threshold BLS signature scheme,
who’s security model is dependent on a t honest parties (threshold) of n parties
(t−of−n). This model of signatures is also referred by aggregates signatures.

The threshold BLS signature defines a tuple of five algorithms
(Gen, PartialSign, PartialV erify, SigCombine, SigV erify) as follows,

• Setup - Same as BLS signature

• Gen(1λ) - A deterministic algorithm generates a sk $←− Zq and a public
key skG. The secret is then made into n shares of si ∈ Zq, such that
pki = skiG. The secret key is destroyed after the distribution of secret
shares.

• PartialSign(ski,m) - Generates σi ← skiH(m)

• PartialV erify(σi,m, pki) - The algorithm outputs 1/accept if

ê(pki, H(m)) = ê(G, σi)

else 0/reject.

• SigCombine - A deterministic algorithm that generates σ from t distinct
partial signature σi for a message m.

• SigV erify(σ,m, pk) - The algorithm outputs 1/accept if

ê(pk,H(m)) = ê(G, σ)

else 0/reject.

5.1.3 Building Blocks
The core component of the drand randomness is the threshold BLS signatures.
Notice that threshold BLS signature requires a deterministic algorithm to share
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the secret and combine the signature without corruption of the shares. This
is essentially done in the setup phase of the randomness beacon.

In the setup phase, the n parties use Feldman’s Verifiable Secret Shar-
ing scheme[39], which allows a secret sk to be shared among n parties using
Shamir’s secret Sharing[64] and a verification mechanism to check if the shares
are consistent with other nodes, so it could be reconstructed later. The recon-
struction of shares is enabled by Lagrange’s interpolation.

However, there is a second requirement that the dealer who initiates the
secret sharing must delete the secret sk after the protocol. This is a strong
requirement as any dealer could behave maliciously and store the secret. To
overcome this, drand uses Pedersen’s Secret Sharing[60], which executes n
instances of Feldman’s VSS and additional verification to guarantee that no
individual gets any information about the secret.

To produce unique randomness for every specific interval with this setup,
we enter the beacon phase. From now, we identify the intervals as round
denoted by r and it increases iteratively from genesis. In the beacon phase,
each node generate their own BLS partial signatures for some predetermined
message m using PartialSign, which changes every round. Then they use a
broadcast protocol to communicate the partial signatures to other nodes. Each
individual node can create the signature σ using SigCombine after receiving
t valid partial signatures.

After recreating the signature, each node can provide the randomness of
that round r is given by H(σ), where H is a collision resistant hash func-
tion. It is worth noting here that the epoch between successive rounds must
be sufficiently long enough to accommodate the computation delay and the
propagation delay for the partial signatures.

At any time after genesis, a beacon provides the following information on
request (a) current round r, (b) current round randomness H(σr), (c) current
round signature σr and (d) previous round signature σr−1

5.1.4 Time dependent Signature
As mentioned earlier, for every round, there must be a message m known to
all nodes upon which the partial signatures are built. In the current deployed
version of drand,

m = H(r||σr−1), σr = skH1(H(r||σr−1))

Referring timelock encryption description, one must be able to commit to
a time in the future after which the secret will be public. Hence, if we make
the message only dependent on time, one could build a timelock using that
message. With the current message, one could only build a timelock of one
epoch where m = H((r + 1)||σr), since you need the knowledge of σr.
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Hence, we propose a new message, which is only time dependent to essen-
tially build a timelock encryption scheme around it.

m2 = H(r), σr = skH1(H(r))

where r is the current round of the beacon. This allows us to timelock a input
to a future round r′ , who’s secret can be revealed when r = r

′ . The signatures
made using m2 will be referred as v2 (version 2) signatures, which enables us
to perform timelock encryption.

5.2 Timelock Encryption with drand
With v2 signatures, we can now commit to a future round of the random-
ness beacon. To build an practical encryption scheme around it, we explore
the notion of identity based encryption in the seminal paper Identity-Based
Encryption from the Weil Pairing by Boneh and Franklin[20].

5.2.1 Identity Based Encryption
In this paper[20], Boneh et al. show the mechanism of using an arbitrary string
ID as a public key to build a secure public key encryption scheme. The idea of
adaption arises from the fact that our message m2 = H(r) can be incorporated
as the arbitrary string.

It is worth noting here that Boneh et al.[20] did include possible extensions
of IBE in the paper with a special note on a digital signature scheme, which
later came to be the BLS signature scheme. Since it builds over the security
models of IBE, they are indeed compatible schemes, which can indeed be used
together without any lapse in theoretical security.

Some of the notable properties of the proposed IBE scheme include,

• The scheme is secure under the adaptive chosen ciphertext attacker in
the random oracle model (IND-ID-CCA).

• It is based on bilinear pairings.

• IBE derives its security from Bilinear Diffie-Hellman assumption (BDH)
on elliptic curves.[20]

5.2.2 Definition
Until now, we have explored all the working parts of a practical timelock
encryption scheme. To put all together, we define the notion of timelock
encryption as a tuple of three algorithms (Gen,Enc,Dec) defined as follows,

• Gen - The Gen algorithm mimics drand. The algorithm generates a
secret key s and distributes it among the n nodes and a public key pk.
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• Enc(m, r, pk) - The algorithm takes the round to timelock r, message
to encrypt m and the public key pk as input and outputs a ciphertext c.

• Dec(c, r, σ) - The algorithm takes the ciphertext c, round to which the
ciphertext was timelocked r and the signature produced by the beacon
σ as input and outputs m if r is less than current round else discards it.

5.2.3 Setup
To build the timelock encryption, we require the following cryptographic prim-
itives.

• An elliptic curve with domain parameters (p, a, b, G1, G2, GT , n, h) with
a pairing defined as ê : G1 ×G2 → GT . G1 = 〈G1〉, G2 = 〈G2〉

• A randomness beacon with distributed public key Pub that produces a
threshold BLS signature σ at round r using H(r) as message.

• Hash functions
H : {0, 1}∗ → Z∗p

H1 : {0, 1}∗ → G2

H2 : GT → {0, 1}l

H3 : {0, 1}l × {0, 1}l → Z∗p

H4 : {0, 1}l → {0, 1}l

where l is the length of the message.

• A semantically secure encryption scheme E

5.2.4 Encryption
The encryption Enc(m, r, Pub) is given as follows :

Qr = H1(H(r)) ∈ G∗2

φ
$←− {0, 1}l ; k ← H3(φ,m)

Gr = ê(Pub,Qr) ∈ GT

C = 〈kG1, φ⊕H2(Gkr), EH4(φ)(m)〉

5.2.5 Decryption
The decryption Dec(c, r, σ) is given as follows :

1. If r is greater than current round, REJECT

2. Parse C as 〈U, V,W 〉
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3. Compute φ = V ⊕H2(ê(U, σ))

4. Compute m = W ⊕ EH4(φ)(m)

5. Set k = H3(φ,m). Test if U = kG1. If not, REJECT.

6. Output m as the message.

5.2.6 Correctness
To validate the correctness of the scheme, we check for the equality of second
term in the ciphertext, since other two are straightforward to verify correctness
if the middle term is valid.

As noted earlier, for some round r, the signature σ = sH1(H(r)) and
Pub = sG1 by construction, where s is the secret which was shared among n
participants in setup.

To validate,
φ = V ⊕H2(ê(U, σ))

= φ⊕H2(Gkr)⊕H2(ê(U, σ))

= φ⊕H2(ê(Pub,Qr)k)⊕H2(ê(kG1, sH1(H(r))))

= φ⊕H2(ê(sG1, H1(H(r)))k)⊕H2(ê(kG1, sH1(H(r))))

By definition of bilinear pairings, we get

= φ⊕H2(ê(G1, H1(H(r)))ks)⊕H2(ê(kG1, sH1(H(r))))

= φ⊕H2(ê(kG1, sH1(H(r))))⊕H2(ê(kG1, sH1(H(r))))

= φ

Hence, we have a valid and practical timelock encryption scheme secure
under the IND-ID-CCA enabled by pairing friendly elliptic curves.
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Implementation

In this chapter, we explore the practical nature of our timelock encryption
through concrete implementations. The approach is two fold (a) A proof of
concept of timelock encryption for any arbitrary message. (b) Integration with
Filecoin for timelocking transactions.

6.1 Proof of Concept
In our proof of concept (PoC), we build a website for timelock encryp-
tion, where one can timelock any arbitrary message m to a round r of
drand’s randomness beacon. The encrypted message can only be decrypted
if the beacon’s round has elapsed r. The code for the implementation is
at the following Github repository (https://anonymous.4open.science/r/
timelock-encryption). The platform was built using JavaScript and NodeJS.

The project is standalone and can be built on any platform with NodeJS
support. The build instructions are provided in the README of the reposi-
tory.

6.1.1 BLS12-381 Curve
The core of our protocol depends on elliptic curve cryptography and bilinear
pairings. For our implementation, we use the BLS12-381 curve, which is used
by drand’s randomness beacon as well (compatibility) and is pairing friendly.

Deconstructing the BLS12-381 curve, the BLS stems from the authors
name Barreto, Lynn, and Scott. 12 is the embedding degree the curve, which
is the smallest integer k required to transform the ECDLP problem of an
elliptic curve over Fp into a discrete logarithm problem (DLP) of finite field
Fpk , courtesy of the MOV attack[57]. A higher embedding degree offers better
security but increase computational complexity. 381 is roughly the number the
bits required to represent the point coordinate on the curve. We have already
defined the deconstruction of the groups from the field extension in pairing
background (Sec. 2.8). We will be using G1 for keying operations and G2 for
signing operations.

https://anonymous.4open.science/r/timelock-encryption
https://anonymous.4open.science/r/timelock-encryption
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We will be using the noble-bls12-381 1 library for performing elliptic curve
operation on the BLS12-381 curve including pairing. The library was chosen
because it provided :

1. Fast curve operations in JavaScript, which was required to build the
application in NodeJS

2. Compatibility with the drand implementation. To implement BLS sig-
natures on the BLS12-381 curve, a set of four parameters2 must match
among implementations for cross compatibility. In our case, the noble-
bls12-381 library and the primitives used in drand’s implementation must
be compatible. The parameters are

• PK IN - Public key in G1

• HASH OR ENCODE - true. Both libraries use HashToCurve
instead of EncodeToCurve. Recall our definition of H1,

H1 : {0, 1}∗ → G2

The hash function maps any arbitrary string to a point on the curve
defined from G2. Both implementations use hash-to-curve-11.3

• DST (Domain Separation Tag) - BLS SIG BLS12381G2 XMD:SHA-
256 SSWU RO NUL

• RAND BITS - 64

With that compatibility check, we can safely use the noble-bls12-381 to
finish our implementation.

6.1.2 Building blocks
From our setup definition in Sec. 5.2.3, we still require concrete implementa-
tions of certain crypto primitives to achieve the guaranteed theoretical security.
They are implemented as follows,

• H and H3 were built from SHA256, a strong hash function

• H2 and H4 were built using SHAKE256, which is a standard extensible
output function (XOF). XOF is a cryptographic hash function which can
provide an output of any arbitrary large number of random bits.

• H1 is built from hash-to-curve-11.
1https://github.com/paulmillr/noble-bls12-381
2https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-bls-signature
3https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-hash-to-curve-11

https://github.com/paulmillr/noble-bls12-381
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-bls-signature
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-hash-to-curve-11
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• For semantically secure Encryption E, we use AES in GCM mode with
256 bits of security. Since it’s authenticated encryption, we use other
parts of the ciphertext from the timelock encryption as additional au-
thenticated data (AAD). This provides an authentication tag to validate
that the other part of the ciphertext weren’t tampered.

• Encoding - Ciphertexts are wrapped in base64 encoding.

With the crypto primitives implemented, we construct our encrypt and
decrypt functions. They were exposed as APIs through NodeJS and can be
interacted from the website using AJAX requests. The encryption and de-
cryption are done on the server side and hence, the website is very lightweight
and with good cloud servers, the website can provide timelock as a service
(TLaaS).

6.1.3 Integrating drand
drand provides a JS client library drand-client4, which allows integration of
the drand API interfaces easier into the PoC. Since, drand can be self hosted
as well, we provide a configuration file under config/default.json, which
allows any drand hosting to be integrated with our PoC. However, it must
have v2 signatures enabled for a working timelock encryption. We have forked
the primary repository to add this functionality and some other tweaks to host
a functional drand locally for testing our PoC (https://anonymous.4open.
science/r/drand).

To integrate a drand beacon, we require two parameters,

1. chainHash - An unique identifier for a particular distributed randomness
beacon. The most common publicly hosted drand version is known as
League of Entropy 5.

2. urls - Set of URLs for interacting with the beacon’s API.

Both these parameters must be added in config/default.json for the
drand-client library to identify and interact with the correct distributed ran-
domness beacon.

6.1.4 User interface
Fig.6.1 is the website for our PoC of timelock encryption. It provides an
easy to use interface for encrypting and decrypting messages using timelock
encryption. A message can be encrypted using either a particular round (Fig.
6.2) or a particular time (Fig. 6.3) in the future. There’s a button present to
fetch the current round of the drand beacon, so the user can use it to timelock

4https://drand.love/developer/clients/#js
5https://www.cloudflare.com/leagueofentropy/

https://anonymous.4open.science/r/drand
https://anonymous.4open.science/r/drand
https://drand.love/developer/clients/#js
https://www.cloudflare.com/leagueofentropy/
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to a round after that. If time is provided, the backend automatically converts
the time in future to the correct future round of the drand beacon, since each
round occurs at regular epochs of time. Attempting a message to decrypt a
message before the round has elapsed (Fig. 6.4) will result in a warning to
wait for that round to be elapsed. If the round has elapsed, the message will
be decrypted (Fig. 6.5).

Figure 6.1: User Interface
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Figure 6.2: Encrypt a message using round number
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Figure 6.3: Encrypt a message using time
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Figure 6.4: Decrypt a message before time

Figure 6.5: Decrypt a message after time
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6.2 Integration with Filecoin
The second part of our implementation is to integrate timelock encryption into
a blockchain technology, which can utilise the scheme for frontrunning protec-
tion. We chose Filecoin6 as our platform since drand was already implemented
inside the Filecoin ecosystem for their consensus, the availability of compatible
elliptic curve primitives and the possibility of extending timelock encryption
to support other functionalities of the platform, which are described in future
work.

In this implementation, due to the complexity of the existing code base
and the dependency to learn the Go programming language, the integration is
still ongoing. Since the project is open-sourced, the goal is continue working
on the project and finish the implementation. However, in this section, we
provide a concrete road map of the work plan and the possible challenges that
have been identified to affirm the interest to continue the implementation.

6.2.1 Architecture
Filecoin is a distributed storage network based on blockchain technology. File-
coin miners can elect to provide storage for the network and receive the File-
coin cryptocurrency (FIL) as a reward if they provide cryptographic proofs
that prove that the agreed storage by the miner is indeed provided. Outside
of this, FIL cryptocurrency can also be sent among users through transactions
which are recorded on the blockchain. The consensus mechanism is known as
Expected Consensus (EC), which elects a leader at random from a weighted
set of miners based on storage provided. Hence, the consensus is powered
by the proof of storage itself ie a miner’s stake in the consensus protocol is
proportional to the storage provided by him.

Filecoin’s functionality is powered through the Filecoin virtual machine
(Filecoin VM). The decentralized network generates a series of blocks and uses
consensus to agree which chain is the correct one. Each block contains a series
of state transitions called messages7, and a checkpoint of the global state after
the application of those messages. The global state contains a set of actors
and is deterministically generated from the initial sate and the set of messages
generated by the system.

6.2.2 Actors
A actor is essentially the equivalent of an Ethereum smart contract. Each actor
has their own state, an associated address, a Filecoin balance, a set of methods
designed to interact with the actor and a nonce which tracks the number of
messages sent by the actor.

6https://filecoin.io/
7Transactions are messages within filecoin ecosystem as it initiates a state transition.

https://filecoin.io/
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For an external user to interact with the actor, he must send a signed mes-
sage to the filecoin network with the actor’s address and a method reference.
In turn, he must pay a fee to miner to include the message in the block. The
address used to sign the message must also have sufficient filecoin to execute
the message in the VM, which is proportional to the amount of computation
required to process the message. There are 11 builtin system actor (not user
deployable) present in the filecoin system.

Our goal is to build a new system actor part of the filecoin system called
the timelock actor, which can receive an timelocked message from an user,
decrypt it after the secret is revealed and invoke the actual actor part of the
original message. The address of the user signing the message must have
enough filecoin associated with him for the cost of decryption.

6.2.3 Roadmap
To achieve our goal, the integration is spread across three repositories, which
all needs to be completed to have a working timelock encryption.

The first part is on the client side, where a prototype for users must be
built to timelock their messages and send it to the filecoin network. Since we
already have a PoC built in JavaScript, the filecoin.js JavaScript library8

can be used to integrate the encryption functionality in the client library.
Additionally, it must include the proper address and method reference for
the timelock actor to have the timelocked message processed by the Filecoin
network.

The second part of the work stems from designing the actor itself. Filecoin
maintains all 11 system actors under the spec-actors repository (https://
anonymous.4open.science/r/specs-actors), which will be the focus for this
part. The new timelock actor will comprise of the following state and methods

• State - The state will be a hashmap of timelocked messages.

• Method 1 - The first method will be the external interface of the actor.
Users will send their messages to this method reference. The method
will check for fee validity for decryption with the associated user address
and add the transaction to the actor’s state.

• Method 2 - The second method is the crux of our logic and will be exe-
cuted when the block is produced. The method interacts with the drand
randomness beacon to get the signature and decrypts the message. After
decryption, the actual actors are invoked for their respective messages.

The final part is to integrate the timelock actor in the filecoin infrastruc-
ture. This will be done in the lotus repository (https://anonymous.4open.

8https://filecoin-shipyard.github.io/filecoin.js/

https://anonymous.4open.science/r/specs-actors
https://anonymous.4open.science/r/specs-actors
https://anonymous.4open.science/r/lotus
https://anonymous.4open.science/r/lotus
https://filecoin-shipyard.github.io/filecoin.js/
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science/r/lotus), which is the code for filecoin network, implemented in Go.
On the lotus codebase, three distinct functionalities will be focused.

• The new actor must be registered as a system actor at the genesis of the
filecoin instantiation, so that it will be part of the global state. This is
required to dispatch the timelocked message to Method 1, when a user
issues a message to the timelock actor’s address. The implementation
requires several abstractions to be added, such that timelock actor can
be invoked from other actors to offer a different functionality.

• Method 2 must be called at the end of an epoch before a block is produced
to achieve frontrunning protection.

• Add a runtime interface to fetch the v2 signatures from the drand ran-
domness beacon. This method will be used for decrypting the timelocked
message.

6.2.4 Challenges
While working on the integration, three challenges have been identified that
have an impact on the implementation.

• Validity of messages - While the timelock actor can validate if the as-
sociated address has enough filecoin for executing the decryption, the
original message can be validated only at the end of the epoch. Hence,
there must be a mechanism to validate the original message, such that it
wont be discarded at the end. zkSNARKs can be used for proving that
the original message costs a particular amount of filecoin and that the
user has the required amount. The proof validation must be done by the
timelock actor when it receives the message.

• Round identification - The client must have a mechanism to identify the
right round of drand for appropriately timelocking the message. If the
round is still in the future at the time of block production, the message
must be discarded. However, this technique is counter-productive and a
better mechanism is required for handling such messages.

• Epoch Synchronization - Filecoin and drand have different epoch as they
are independent entities. Hence, the actual deployment must have a
δ (difference in epochs) smaller than network propagation, so that a
miner can’t decrypt and frontrun the message when it enters the filecoin
network.

https://anonymous.4open.science/r/lotus
https://anonymous.4open.science/r/lotus
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Analysis

In this chapter, we perform various analysis of our construction to capture
the practicality and reliability of the protocol. The analysis is approached from
two fronts (a) Performance and (b) Security.

7.1 Performance analysis
A cryptographic scheme could only be made practical if it can be built from
previously existing cryptographic primitives and provides high performance in
implementation. In this section, we explore the performance of the scheme
both from theoretical and practical outlook.

7.1.1 Theoretical performance
Theoretical performance of the scheme stems from the collective number of
costly computation that compose the scheme. Since our construction is based
on elliptic curve cryptography, curve operations are predominantly computa-
tion intensive in comparison to their hash function and symmetric encryption
counterparts.

Hence, we define the performance of the scheme using the number of
curve operations required to compute the encryption and decryption. Also,
HashToCurve is meant to run using a constant number of steps to prevent side
channels attacks. Hence, in our analysis, we will consider HashToCurve as a
single operation, instead of its multiple separate curve operations, which vary
between implementations.

To encrypt a message, our scheme requires 2 scalar multiplications, 1
HashToCurve and 1 pairing operation. Similarly, for decryption, the scheme
requires only 1 scalar multiplication and 1 pairing operation.

7.1.2 Practical performance
To obtain a sense of practical performance, we stress test our PoC to achieve
appropriate benchmarks. However, we study the encryption and decryption
operation as a whole and not by their individual curve operations. The noble-
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bls12-381 library has already performed the benchmarks on standalone curve
operations1.

The benchmarks were run on system with AMD Ryzen 9 3900XT 12-Core
Processor CPU and 32GB System Memory. The system also hosted a local
version of drand for v2 signatures to minimize the additional execution time
caused due to network delay.

On our first test, we ran the encryption and decryption functions for 1000
turns on randomly generated 3KB messages with a fixed round. The 3KB
message size was chosen, as on average, that is the size of the smart contract on
Ethereum. On average, the encryption took 62.4ms with a standard deviation
of 10ms and the decryption took 32.9ms with a standard deviation of 4ms.

In our second test, we wanted to study the growth of the length of cipher-
text as a function of the input message. Since computation onchain might be
expensive for decryption, it is possible to add just the encrypted transaction
to the block and provide zero knowledge proofs for validity of the transaction.
The transaction can be decrypted at a later stage offchain, once the effects
of front runners has been averted. But, the transaction indeed preserves its
position in the blockchain.

In this approach, however, block space is of importance. The amount
of block space available per round is limited in size and hence the encrypted
transaction shouldn’t occupy too much space. For our test, we run the encryp-
tion function for 1500 rounds with increasing byte size of the message. The
result is plotted below as a graph (Fig. 7.1). On average, a 3KB message or
transaction produces a 16KB encoded ciphertext, which is well within range.

7.2 Security Analysis
Another component of practicality stems from reliability, which could be stud-
ied by analysing of security of the construction. A similar approach to previous
section is taken, exploring both the theoretical and practical aspects of security
of our construction.

7.2.1 Theoretical Security
Since our construction is based on a composition of different protocols, the
hardness problems which power the security of the scheme are mentioned at
their respective sections.

The original IBE paper[20] is adaptive chosen ciphertext attack
secure(IND-ID-CCA) under the Bilinear Diffie-Hellman assumption. However,
the bilinear pairings defined in the paper are of the form ê : G1 × G1 → G2.
However, our construction uses the pairing of the form ê : G1 × G2 → GT ,
which updates the security problem. However, the proof from IBE still holds

1https://github.com/paulmillr/noble-bls12-381#speed

https://github.com/paulmillr/noble-bls12-381#speed
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Figure 7.1: Growth of ciphertext length w.r.t plaintext size

for our construction to show its secure under adaptive chosen ciphertext attack
(IND-ID-CCA).

Our construction is secure under the updated Computational Co-Bilinear
Diffie-Hellman Problem [21] which is defined as follows,

Let G1, G2 and GT be three groups of prime order p. Let ê :
G1 × G2 → GT be an admissible bilinear map and let P be a
generator of G1 and Q be a generator of G2. The Computational
Co-Bilinear Diffie-Hellman in 〈G1, G2, GT , ê〉 is as follows : Given
〈P, aP, bP 〉 ∈ G1 and 〈Q, aQ, cQ〉 ∈ G2 for some random elements
a, b, c ∈ Z∗q , compute W = ê(P,Q)abc. An algorithm A has an
advantage in solving the problem in 〈G1, G2, GT , ê〉 if

Pr[A(P, aP, bP,Q, aQ, cQ) = ê(P,Q)abc] ≥ ε

where the probability is over the random choice of a, b, c in Z∗q , the
random choice of P ∈ G1, Q ∈ G2 and the random bits of A.

An alternative proof approach for the security of the scheme would be to
use Universally composable security[27], which guarantees secure composition
of arbitrary protocols.
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7.2.2 Practical Security
The practical security of our scheme come from the building blocks of our im-
plementation. SHA256, AES256GCM and SHAKE256 are all well studied and
tested protocols in the industry for their practical security. With our hardness
guarantee from last section, we could argue that a proper implementation of
the construction from the building blocks will be practical secure. For exam-
ple, in our construction φ

$←− {0, 1}l requires a random string to be generated
for the size of the message. To achieve this, we use nodeJS’s randomBytes
API2 from the crypto library which is secure pseudo random generator using
true source of randomness like /dev/urandom for seeding.

However, implementations can often go wrong (ex. insecure randomness)
and hence, a thorough security audit must be performed before practical adop-
tion. Drand has performed a thorough analysis for their randomness beacon
and provide a comprehensive list of attack vectors that threaten the security
of their protocol3.

2https://nodejs.org/api/crypto.html#crypto_crypto_randombytes_size_
callback

3https://drand.love/docs/security-model/#randomness-generation

https://nodejs.org/api/crypto.html#crypto_crypto_randombytes_size_callback
https://nodejs.org/api/crypto.html#crypto_crypto_randombytes_size_callback
https://drand.love/docs/security-model/#randomness-generation
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Drawbacks

Timelock encryption offers a practical solution to fight the frontrunning
crisis, while preserving the open nature of blockchain technology. However, the
decentralized nature of the ecosystem, brings certain drawbacks to the scheme,
outside the influence of timelock encryption

1. Transaction censorship - Since transactions are broadcasted over the p2p
network, an attacker seeing an encrypted transaction in the network can
censor its propagation by withholding it. Since outside the timelock en-
cryption, the transaction still requires certain metadata to travel through
the network, the attacker can enforce censorship rules through them (for
ex, the IP address). Transaction censorship is an already existing prob-
lem in blockchain protocols and most propose a penalty approach as the
viable solution.

2. Blind Reordering - A miner can choose to blindly reorder the encrypted
transactions and propose the block. The blind reordering could inad-
vertently affect the users, which is outside of their control. A proposed
solution is to enforce an sequencing order based on the properties of the
ciphertext (for ex. lexicographically).

3. Collusion - There is no mechanism to prevent collusion between miners
and devious users. This can be done by sharing ciphertexts and request-
ing a reordering to bench a profit. However, this is an extremely rare
scenario in a decentralized setting with a low impact factor.

4. Destabilization of Consensus - It’s worth noting here that timelock en-
cryption, if applied to all transactions, removes MEV completely. In
that scenario, miners could collude to reorder transactions and rewrite
the blockchain history after the transactions are decrypted and the block
is produced, to net a significant MEV. Essentially, this can cause desta-
bilization of consensus and break the protocol.
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Future Work

In this chapter, we explore the possible avenues of future work leveraging
the timelock encryption construction. A major focus of the future work, how-
ever, will be integrating the timelock encryption into the Filecoin ecosystem.

9.1 Integration with Ethereum
Ethereum is by far, the biggest decentralized platform for smart contracts with
a market cap of $340 billion. Hence, it would be a great platform to imple-
ment the timelock encryption and study the scalability of the construction.
However, there is no precompile currently available on the Ethereum Virtual
Machine (EVM) to execute elliptic curve operations on BLS12-381 curve. The
precompile has been proposed in EIP-25371 but is still under review.

However, there are EVM compatible platforms like Celo2, which carry
the functionality of Ethereum on a new blockchain protocol. Celo has the
precompile EIP-2537 already accepeted under cip-00313 and can be used as
an avenue to build the integration. Once EIP-2537 is made available, the
implementation can then directly be tested on the mainnet.

The amount of computation carried out on EVM per block is limited and
a wide scale adaption of the timelock encryption could slow down the mainnet
and drive up the fees for decryption onchain. Hence, an alternative approach
to decrypting the transaction would be using a layer 2 technology. Layer
2 technology4 is proposed to scale the Ethereum performance, by offloading
computation from the mainnet. An approach to layer 2 technology for timelock
encryption would look as follows :

• Decryption of the transaction is carried outside layer 1

1https://eips.ethereum.org/EIPS/eip-2537
2https://celo.org/
3https://github.com/celo-org/celo-proposals/blob/master/CIPs/cip-0031.md
4https://ethereum.org/en/developers/docs/scaling/layer-2-rollups/

https://eips.ethereum.org/EIPS/eip-2537
https://celo.org/
https://github.com/celo-org/celo-proposals/blob/master/CIPs/cip-0031.md
https://ethereum.org/en/developers/docs/scaling/layer-2-rollups/
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• Proof of validity of transaction is on layer 1 (the smart contract inside
costs a particular amount of gas).

• A rollup smart contract in layer 1 that can enforce correct decryption on
layer 2 by using the transaction data on layer 1

The most common form of validity rollups are zk-Rollups, which uses
zero knowledge proofs like zkSNARKs to validate the encrypted transaction.
Optimistic rollups is another approach, which assumes that the transaction is
valid and executes it off the mainnet and proposes the new state after execution
to layer 1. In case someone dispute that the transaction is fraudulent, they can
invoke a fraud challenge and the transaction will be executed outside layer 1 to
answer the challenge. If the transaction is indeed found invalid, the challenger
proposes the new state and gets the collateral used before as reward. The layer
2 is rolled back to the last non fraudulent state.

9.2 Proof of replication
Proof of replication[40] is a new paradigm in data storage, which enforce a
storage provider to store a unique replica of the data through cryptographic
proofs, even if the data is available from other sources. Our timelock encryption
can essentially be used for proof of replication with an idea similar to the one
proposed here[19]. In this construction, we will be using the v1 signatures,
as a timelock of 1 epoch of drand is only required and is significant to the
construction (Sec. 5.1.4). The core of the proof goes as follow : Consider a file
f and a unique replica identifier id. The file f is broken down down into l-bit
blocks B1, B2..Bn. The proof for a block Bi is yi = Enc(r+1, Bi⊕H(id||i), pk),
where r is the current round, H is a hash function and pk is the drand public
key.

Once the drand produces the σr for round r, the verifier chooses a file block
Bx at random and requests for yx from the storage provider. The provider uses
our timelock encryption scheme to encrypt the necessary file block and sends
it to the verifier. Once the drand passes to round r + 1, the proof can be
decrypted and if it is Bx, the proof is valid. The strength of the proof arises
from two factors (a) Since we are using version 1 signature, the provider could
not encrypt the block before σr is made available. (b) The timelock is only
for 1 epoch. If the file block is large enough, he couldn’t retrieve it from
other sources and compute the encryption within that epoch. The validity of
the proof holds only if the encryption is published before the v1 signature is
published for the next round. The process can be continued at each epoch to
provide a contiguous proof of replication.
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Conclusion

Timelock encryption offers a secure mechanism to mask transactions over the
dark forest from threat actors interested in exploiting the information in the
transaction for frontrunning attacks. To mitigate them, we proposed a prac-
tical timelock encryption scheme, building over threshold BLS signatures and
identity based encryption. The feasibility of the scheme was realized through a
proof of concept and an integration roadmap in the filecoin infrastructure. The
analysis established the scalability of the protocol and offered a checkpoint for
further fine tuning the implementation. Finally, we concluded the work with
possible drawbacks of the scheme with suitable fixes and new applications of
interest for timelock encryption, marking the future work of the research.



Appendix A

Anonymized Repositories

As required, the Github repositories of codebases relevant to the thesis have
been anonymized using https://anonymous.4open.science/. The links pro-
vided will stay valid until 25/03/2022. After that, the links will redirect back
to the original repository. A selection of four separate codebases have been
anonymized :

• timelock-encryption - https://anonymous.4open.science/r/timelock-
encryption

• drand - https://anonymous.4open.science/r/drand

• spec-actors - https://anonymous.4open.science/r/specs-actors

• lotus - https://anonymous.4open.science/r/lotus

https://anonymous.4open.science/
https://anonymous.4open.science/r/timelock-encryption
https://anonymous.4open.science/r/timelock-encryption
https://anonymous.4open.science/r/drand
https://anonymous.4open.science/r/specs-actors
https://anonymous.4open.science/r/lotus
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